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ABSTRACT

Brown, S.; Nicholls, R.J.; Pardaens, A.K.; Lowe, J.A.; Tol, R.S.J.; Vafeidis, A.T., and Hinkel, J., 2019. Benefits of climate-
change mitigation for reducing the impacts of sea-level rise in G-20 countries. Journal of Coastal Research, 35(4), 884–
895. Coconut Creek (Florida), ISSN 0749-0208.

This paper assesses the potential benefits of climate-change mitigation in reducing the impacts of sea-level rise over the
21st century in G-20 countries (excluding the European Union as a whole), using the Dynamic Interactive Vulnerability
Assessment model. Impacts of the expected number of people flooded annually and wetland losses were assessed. To
assess the benefits of mitigation, it was assumed that defences were not upgraded during the study. Globally, with a sea-
level rise of 0.68 m by the 2080s (with respect to 1980–99), representing a potential future with limited climate-change
mitigation, and with the Special Report on Emissions Scenarios A1 socio-economic scenario, 123 million additional people
could be flooded annually and 39% of present global wetland stock could be lost. For a 0.19-m rise in sea level, associated
with a substantial reduction in emissions, the number of people flooded could be reduced to 13 million/y, with 21% of
global wetland stock loss, unless new wetlands emerge. Collectively, non-Annex 1 G-20 countries experience a
disproportionately higher number of people flooded in their nations compared with the proportion of population flooded
globally. The greatest wetland losses for G-20 countries are projected for Australia, Indonesia, and the United States.
Thus, G-20 nations with the highest emissions or gross domestic product frequently do not experience the greatest
impacts, despite some of these nations being potentially more able to pay for adaptation.

ADDITIONAL INDEX WORDS: Adaptation, wetland loss, expected number of people at risk from flooding, equity.

INTRODUCTION
Coastal zones contain large populations and valuable

ecosystems that are threatened by sea-level rise (SLR)

(McGranahan, Balk, and Anderson, 2007; Small and Nicholls,

2003). Rising sea levels could lead to increased flooding,

saltwater intrusion, increased shoreline erosion, and wetland

loss (Nicholls, Woodroffe, and Burkett, 2009; Wong et al., 2014).

Human-induced pressures, for example groundwater extrac-

tion, can locally exacerbate these effects (Wong et al., 2014). It

is therefore important to understand rates of potential SLR,

who and what may be affected, and the potential benefits of

climate-change mitigation for coastal zones around the world.

Numerous studies have analysed potential exposure, risks,

or losses due to future SLR at local, regional, or global levels,

with a range of input conditions and uncertainties. Historical

and recent SLR and coastal change have been recorded (e.g., by

tide gauges) and mapped (e.g., via remote sensing; Gutierres et

al., 2016). Future impacts of projected SLR have also been

modelled numerically. For instance, Hinkel et al. (2014)

projected that without adaptation, 0.2–4.6% of the global

population could be expected to be flooded annually, with a

SLR of between 0.25 and 1.23 m by 2100 (relative to 1980–99).

This number could be considerably reduced with adaptation. In

the United States alone, a SLR of 0.9 m by 2100 could result in

an area of land flooded that contains 4.2 million people unless

preventative measures are undertaken (Hauer, Evans, and

Mishra, 2016). In China, 70% of cities are in coastal areas,

many of which have rapid population growth. Many of these

cities are in low-lying areas and are at risk from future flooding,

erosion, and land subsidence (Chen, 1997), particularly where

there is insufficient protection or regulation to reduce risk.

Hardy and Nuse (2016) found that the countries with the

highest emissions are the most exposed to SLR in terms of land
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loss over multimillenia (in absolute numbers, mainly due to

their size). Additionally, by studying 84 developing countries,

Dasgupta et al. (2009) found that tens of millions of people are

likely to be displaced by SLR during this century, with 1.28% of

the global population from these countries alone affected with 1

m of SLR without shoreline protection. The greatest projected

wetland losses (as a percentage) were reported for the Middle

East, North America, East Asia, and the Pacific region. At

country level, the highest proportional losses were projected for

Vietnam, Jamaica, and Belize. Kirwan and Megonigal (2013)

analysed feedback in wetland systems under SLR. They found

that human interaction and socioeconomic conditions affect

wetland transgression from lowland to adjacent uplands under

SLR. Many other studies have also found that for both

population and ecosystems, human intervention or adaptation

to reduce risk can greatly influence impacts.

Only a few studies have focused on assessing the relationship

between the proportion of global impacts projected for a nation

and its contribution to global emissions or a nation’s ability to

adapt (here it is assumed that the ability to adapt is related to a

nation’s gross domestic product [GDP] per capita; that is, a

greater GDP per capita means that a nation is more able to

adapt to the effects of SLR. However, it is acknowledged that

this is a simple measure and that some nations may have other

pressing issues that require investment. Furthermore, some

nations may be exposed to multiple climate threats and choose

to prioritise other noncoastal adaptation, such as improved

resilience to pluvial and fluvial flooding).

For the period 1900 to 2010, the long-term trend in global

mean SLR has been estimated to be 1.7 6 0.2 mm/y (Church et

al., 2013). Part of this rise was due to natural changes, but a

proportion was attributable to human-induced climate change

(Church and White, 2011; Jevrejeva, Grinsted, and Moore,

2009). The rate of future SLR is uncertain, with the

Intergovernmental Panel on Climate Change’s Fifth Assess-

ment Report (IPCC AR5) projecting a rise of between 0.28 m

and 0.98 m by 2100 relative to 1986–2005, depending on

emissions scenario and other uncertainties (Church et al.,

2013). Although the benefits of coastal adaptation (i.e. the

process of adjusting to actual or expected climate and its effects,

such as through building sea walls or raising infrastructure)

have been well documented (e.g., Wong et al., 2013), research

into the benefits of climate-change mitigation (i.e. a reduction

in the source of greenhouse gas emissions) in coastal zones is

more limited. However, the benefits of climate-change mitiga-

tion for reducing the rate of SLR are known to become more

apparent as time progresses (e.g., Nicholls and Lowe, 2004;

Nicholls et al., 2018). The role of mitigation for coastal impacts

is particularly important, given the Paris Agreement (United

Nations, 2015) aims to hold ‘‘the increase in the global average

temperature to well below 28C above preindustrial levels and

pursuing efforts to limit the temperature increase to 1.58C

above pre-industrial levels.’’ Sea levels, however, will continue

to rise under a future of climate-change mitigation even once

global surface temperatures are stabilised (known as the

commitment to SLR). This is due to the thermal inertia of the

oceans and the time for land-based ice masses to reach new

equilibrium states (e.g., Nicholls and Lowe, 2004). Therefore,

adaptation remains essential. As the benefits of adaptation or

climate-change mitigation operate over different timescales

(Berry et al. 2015; Swart and Raes, 2007), it is more difficult to

assess the benefits of mitigation in coastal settings.

Various commentators (e.g., Den Elzen, Hof, and Roelfsema,

2013; United Nations, 2011) have suggested that developed

countries, including G-20 nations, have an important role in

climate-change mitigation and policy. This is because the G-20

countries are responsible for approximately three quarters of

the world’s carbon dioxide emissions (cf. UNFCCC, 2013; World

Bank, 2016a). Hence the aim of this paper is to investigate the

potential impacts of SLR under future emissions scenarios that

represent different degrees of climate-change mitigation at

global, G-20, and national levels. This will be achieved by

analysing (1) the expected number of people flooded per year

(ENPF/y) and wetland losses without additional adaptation; (2)

the relationship of these impacts in G-20 nations to national

contributions of global carbon dioxide emissions and GDP; (3)

the benefits of climate-change mitigation in synergy with

adaptation. These investigations will help assess who or what

is at risk in the world’s major economies, and how they may

benefit through climate-change mitigation.

This paper is structured as follows. First, the scenarios of

SLR are described. A complementary socioeconomic scenario is

also presented. Second, the impacts modelling approach is

discussed. Third, the impacts of SLR and socioeconomic change

are analysed. Fourth, the discussion analyses the results in the

context of emissions and GDP, and also climate-change

mitigation in synergy with adaptation. Other implications are

then considered.

METHODS
Impacts were assessed using sea-level and socioeconomic

scenarios in a coastal impacts model.

Geographic Scale Evaluated
Impacts were analysed globally and for G-20 nations.

Nineteen of the G-20 nations were considered: Argentina,

Australia, Brazil, Canada, China, France, Germany, India,

Indonesia, Italy, Japan, Korea, Mexico, Russia, Saudi Arabia,

South Africa, Turkey, the United Kingdom, and the United

States (Figure 1). The 20th member (the European Union as a

whole) was not analysed to avoid double counting. These 19

countries account for 61% of the world’s coastlines and 65% of

today’s global population (extracted from the Dynamic Inter-

active Vulnerability Assessment model [DIVA] [Vafeidis et al.,

2008]—see ‘‘Impacts Model’’ section below). G-20 countries are

divided into Annex 1 (industrialised economies and those who

were members of the Organisation for Economic Co-operation

and Development in 1992, plus some countries with economies

in transition [UNFCCC, 2013]) and non-Annex 1 countries

(mostly developing nations, some seen to be particularly

vulnerable to climate change or are economically vulnerable

as they rely heavily on fossil fuels [UNFCCC, 2013]). The latter

group includes Argentina, Brazil, China, India, Indonesia,

Korea, Mexico, Saudi Arabia, and South Africa.

Scenarios
The SLR and socioeconomic scenarios used in this modelling

study are described in this section. The magnitude and range of

SLR is the source of uncertainty assessed in this analysis (other
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aspects of uncertainty are noted under ‘‘Further Consider-

ations’’).

Sea-Level Rise
The research presented in this paper uses two scenarios of

SLR, a ‘‘high’’ and a ‘‘low’’ scenario (with uncertainty ranges),

representing scenarios of different degrees of climate-change

mitigation. These scenarios were generated especially for this

study. The associated climate projections were from an earth

system ensemble (ESE), which was an ensemble of opportunity

that was created from previous studies. The model ensemble

consists of 57 variants of the HadCM3C coupled climate model

(Booth et al., 2012, 2013), which is based on the HadCM3 model

(Gordon et al., 2000) (where the ocean has a 1.258 3 1.258

horizontal resolution) with modifications, including an inter-

active carbon cycle, the indirect effects of aerosols, and flux

adjustment (Booth et al., 2012). These ensembles are designed

to explore climate uncertainty through perturbing parameters

in the model subgrid-scale representations of physical process-

es.

For IPCC AR5, Church et al. (2013) gives ranges of projected

SLR derived from an ensemble of different climate models (a

multimodel ensemble) together with results from process-

based models of land-based ice changes. They also include

terms (taken from the literature) for ice-sheet rapid dynamic

change (i.e. change in flow speed and discharge of the ice

sheets) and land water storage. Their projections span several

emissions scenarios and they give the 5th to 95th percentiles of

model results for each emissions scenario. This is known as the

‘‘likely range’’ (Church et al., 2013) and indicates the assessed

likelihood as being 66–100% probability of the event occurring.

The high- and low-SLR scenarios were obtained from the

ESE climate ensembles, which have median temperature

increases of 3.78C and 2.08C respectively, relative to preindus-

trial times. These global mean SLR projections combine

thermal expansion and land-based ice melt, the latter following

Meehl et al. (2007), as this was the most appropriate

methodology available at the time of study. In comparison

with the most recent IPCC report (Church et al., 2013), this

provides a relatively low contribution from land ice melt, with

no component from ice-sheet rapid dynamic change.

The low-SLR scenario spans a range of 0.21 m to 0.44 m in

2100 relative to 1980–99 (for the 10th to 90th percentile model

range), with a central value of 0.31 m. This scenario is broadly

representative of one with strong climate-change mitigation

and thus a large reduction in emissions. In Church et al. (2013),

the most stringent climate-change mitigation scenario is

representative concentration pathway (RCP) 2.6. This spans

0.28 m to 0.61 m in 2100 relative to 1986–2005 (for the 5th to

95th percentile model range), with a central value of 0.44 m.

The high-SLR scenario has an associated median tempera-

ture rise of 3.78C, and is broadly typical of a climate scenario

with limited climate-change mitigation. An additional compo-

nent was included in this SLR scenario to span higher rises,

which account for potential ice-sheet rapid dynamic change

contributions, on the basis of Church et al. (2013). By 2100,

0.03, 0.10, and 0.19 m of SLR were added for the 10th, 50th, and

90th percentiles respectively. This gives the total projection of

SLR by 2100 for the high scenario as being between 0.31 m and

0.79 m (for the 10th to 90th percentile model range), with a

central value of 0.51 m. This spans the range given in Church et

al. (2013) for the RCP4.5 and RCP6.0 scenarios. The central

SLR value for the high SLR scenario is closer to that for

RCP4.5, but the 90th percentile value is greater than the upper

RCP6.0 value.

Impact projections were made using the resulting 10th, 50th,

and 90th percentiles of the low- and high-SLR projections

(Figure 2). A ‘‘no global SLR’’ scenario was also included for

comparison purposes, so that the effect of land-level change

could be analysed.

Socioeconomic Change
In the coastal impacts model, population density and GDP

per capita were distributed to each segment of coast (Vafeidis et

al., 2008; see ‘‘Impacts Model’’) on the basis of conditions in the

base year (1995) (CIESIN et al., 2000). This reflects internal

variations within a country. For instance, coastal zones tend to

be more densely populated than areas farther inland (Small

and Nicholls, 2003). GDP per capita and population density

were used to determine the initialised coastal protection

standards in the base year, and for those cases where future

adaptation is included (see ‘‘Impacts Model’’ section).

Socioeconomic projections for all scenarios were based on

global regional changes following analysis by IMAGE Team

(2002) and Nakićenović and Swart (2000), using the Special

Report on Emission Scenarios A1 socioeconomic scenario. The

Figure 1. The 19 G-20 nations analysed (the European Union is excluded to avoid double counting), divided into Annex 1 and non-Annex 1 countries. Maps

extracted from Vafeidis et al. (2008) and Natural Earth (2017).
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A1 world represents one of rapid and successful economic

development on a global scale, in which regional average

income per capita increases. There is a strong commitment to

market-based solutions, high investment in technology, edu-

cation, and international mobility, with a balanced form of

energy supplies (Nakićenović and Swart, 2000). Global popu-

lation by 2050 grows to 8.6 billion people, before declining to 7.0

billion in 2100, which is lower than many other scenarios. The

A1 scenario is most similar to the newer shared socioeconomic

pathway 2 ‘‘middle of the road’’ scenario (Kriegler et al., 2012;

O’Neill et al., 2014) (the data of the shared socioeconomic

pathways only became available after all computations for the

revised version of the current paper were finished.), and is one

of several socioeconomic scenarios that may be paired with

climate-change scenarios (O’Neill et al., 2014). For simplicity

and because of lack of data, it was assumed that there was a

uniform ratio of change for coastal segments per global region

(i.e. if a segment had twice the GDP per capita or population

density in 1995 compared with a neighbouring segment, this

ratio would remain throughout the projection period).

Impacts Model
The DIVA (DINAS-COAST Consortium, 2006; McFadden et

al., 2007; Vafeidis et al., 2008) model version 3.3.2 is an

integrated model of coastal systems that assesses biophysical

and socioeconomic impacts of SLR for different adaptation

strategies. The model has been applied to analyse the impacts

of SLR numerous times, including (1) the effect of high-end

SLR at a global scale for land loss, displaced people, and

adaptation costs (Nicholls et al., 2011); (2) the assessment of

impacts due to uncertainties in data input (e.g., different

sources of topographic and population data) for global flood risk

(Hinkel et al., 2014); (3) how spatial variations in SLR affect

impacts (Brown et al., 2016); (4) wetland changes (Spencer et

al., 2016); and (5) wetland change, flooding, erosion, and saline

intrusion in the Coral Triangle (McLeod et al., 2010).

The model is based on 12,148 coastline segments (average

length 85 km) that describe all of the world’s coast, except

Antarctica. This allows the model to capture the main coastal

features, but because of the resolution of the global data sets it

generalises complex coastlines, such as around lagoons,

estuaries, or small islands. Biophysical and socioeconomic data

are attributed to each segment. Elevation data were taken from

the Shuttle Radar Topographic Mission, with a horizontal

resolution of 90 m (Rabus et al., 2003).

For impact assessments, the effects of relative SLR (RSLR),

i.e. the combined effects of eustatic SLR and vertical land

movement (based on Peltier [2000]) and an additional 2 mm/y

for selected large subsiding deltas (based on a typical rate from

Ericson et al., 2006) were analysed for each segment. Coastal

flooding caused by RSLR together with storm surges were then

assessed by analysing changes in extreme water levels from 1-

in-10-, 1-in-100-, and 1-in-1000-year events. Return periods in

the DIVA model take account of (1) mean high tide level (based

on harmonic constraints produced by XTIDE [www.flaterco.

com/xtide]); (2) water level due to a change in barometric

pressure; and (3) water level due to changes in wind setup

(assuming an infinitely long, straight coast and uniform bottom

slope, and estimated from wave observations based on Hurdle

and Stive [1989]) as described in Muis et al. (2017). The total

water levels for the extreme events were raised by the

magnitude of SLR that was projected, so that the return

period of a particular extreme water level was reduced. In this

paper, two impact factors are considered in the 2080s (on the

basis of a 30-y mean): (1) The ENPF/y (people/y) and (2) the

total wetland loss (km2).

To calculate the ENPF/y through submergence, first the

number of people potentially exposed to an extreme event was

calculated by integrating the population at set elevation

intervals that are hydrologically connected to the sea on a

digital elevation model. Then, to calculate the number of people

flooded, DIVA integrates those exposed to flooding for different

flood heights and weights by the probability of an extreme

Figure 2. The high, low, and no sea-level-rise scenarios, with respect to 1980–99 for different percentiles of uncertainty. Temperature rise is with respect to

preindustrial levels. Comparisons with sea-level rise are made with the IPCC AR5 report (Church et al., 2013), indicating global mean sea-level rise in 2100 with

respect to 1986–2005.
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event occurring, taking account of defences (which themselves

are dependent on socioeconomic conditions; see below).

To analyse wetland loss, 4315 sites of forested, freshwater,

saltmarsh, and vegetated marshes wetlands plus mangrove

sites were considered, checked, and verified. These were

generated from multiple sources and atlases, including Hooze-

mans, Marchand, and Pennekamp (1993) and Spalding, Blasco,

and Field (1997). Wetlands respond to SLR by horizontal

inland migration, vertical elevation change, and transitions to

other wetland types (McGranahan, Balk, and Anderson, 2007;

Nicholls, Hoozemans and Marchand, 1999). The loss and

change in coastal wetlands (based on their physical context:

low/high unvegetated wetlands, saltmarsh, freshwater marsh,

coastal forest, and mangroves), including migration of one

wetland type to another, is assessed in the DIVA model in

terms of wetland area, on the basis of McFadden et al. (2007).

Wetland change in DIVA is a function of RSLR, tidal range,

sediment supply, and migration (accommodation) space (i.e.

the ability of a wetland to move inland without restriction).

Migration space is reduced by the building of sea dikes (Feagin

et al., 2010; Spencer et al., 2016). An ecological time lag exists

when one wetland type converts to another (see McFadden et

al., 2007). DIVA does not evaluate the creation of new wetlands

(e.g., through restoration, new engineering habitat creation, or

through emerging mudflats) as sea levels rise.

Flood impacts are reduced via adaptation. In DIVA this is

undertaken by modelling dikes. Modelled defences are stylised:

dikes are used, as other types of defence (e.g., artificial dunes)

are challenging to model on a global scale and also because the

type of defences actually used in a particular region may be

unknown. In reality, funds may not be available to implement

defences, or there may be ecological considerations or other

planning or management policies defining a set course of

action.

Dikes are modelled for the base year (1995), following

research from Yohe and Tol (2002). Since there are no empirical

data on actual dike heights available at a global level, dike

heights throughout the world were estimated through an

econometric model calibrated to observed dike heights in

northern Europe. The model estimated a society’s demand for

safety in terms of a design standard used to set dike height on

the basis of per capita income and population density as key

explanatory variables (Yohe and Tol, 2002). Demand for safety

is another phrase for the flood risks deemed acceptable by the

decision maker. This applies for each coastal segment in each

time period. Acceptable risk is reinterpreted as a design

standard used to set dike height. It was assumed that no dikes

were built where there is very low population density (, 1

person/km2). For higher population densities, the demand-for-

safety function was then applied increasingly using a logarith-

mic function, which applies half of the demand for safety at a

population density of 20 persons/km2, and 90% at a population

density of 200 persons/km2.

When analysing the benefits of climate-change mitigation

(see ‘‘Results’’), it was assumed that defences were not

upgraded after 1995, and that no adaptation measures (e.g.,

nourishment, restoration) were undertaken for wetlands.

Where the synergies between mitigation and adaptation are

analysed (see ‘‘Discussion’’), it was assumed that adaptation

measures were upgraded with time (according to the socioeco-

nomic conditions described above and in the ‘‘Discussion’’) and

wetlands were nourished.

RESULTS
The ENPF/y and wetland losses were assessed using the

DIVA model, taking account of sea-level and socioeconomic

change, assuming that the modelled defences were not

upgraded after the base year (1995).

Expected Number of People Flooded Annually
Figure 3a shows that worldwide in the 2080s, for 0.19 m to

0.68 m of SLR (based on a 30-y mean and relative to 1980–

1999), between 13 million and 123 million additional ENPF/y

are projected compared with baseline levels in 1995,

assuming no upgrade in adaptation measures. For each

percentile of SLR analysed, impacts under the low scenario

were approximately half those of the high scenario. In the

2080s, G-20 nations account for up to 54% of the global ENPF/

y, and contain 55% of the global population. The G-20

proportion of the global ENPF/y is higher under the high-

SLR scenario compared with the low scenario. This is

probably due to differences in the standard of protection in

the base year and the number of people in the hazard zone.

The top five G-20 countries for ENPF/y (expressed as a

percentage of national total population) are China, India,

Indonesia, Canada, and Russia. The countries least affected

are Germany, Italy, and South Africa. Only China (where

0.3% of population could be affected under the high scenario

and 0.2% under the low scenario) has a greater national

proportion than the global population flooded. These findings

differ from previous published results (e.g., Hinkel et al.,

2014) because of different SLR and socioeconomic assump-

tions used.

Wetland Loss
Figure 3b plots wetland loss with respect to 1995 levels,

assuming no upgrade in adaptation measures. DIVA only

considers wetland losses or transitions from one wetland type

to another, not the emergence of new wetlands, so the data

presented here depict the worst-case scenario. Virtually all

projected losses are due to climate-induced SLR, rather than

changes in relative land levels.

The benefits of climate-change mitigation are shown for the

2080s, where global losses range between 179 3 103 km2 (for

0.19 m of rise) and 3313103 km2 (for 0.68 m of rise), equivalent

to 21% and 39% of present global stock. G-20 nations contain

two-thirds of the current global wetland stock. By the 2080s,

approximately 60% of all losses (particularly coastal forest,

saltmarsh, and freshwater marsh) are projected to be in G-20

countries regardless of emissions scenario. Globally, the

dominant type of wetland loss is projected to be low

unvegetated marshes (69% lost globally, assuming no new

wetlands are created), as these are low lying and have

extensive coverage worldwide.

DISCUSSION
Following previous studies (e.g., Nicholls and Lowe, 2004),

the SLR scenarios used in this paper demonstrate that under

climate-change mitigation, the rate of SLR is reduced. This
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paper shows that the associated coastal impacts are lessened

and this becomes more apparent as the century progresses.

Simultaneously, climate-change mitigation is projected to

reduce many other adverse impacts (e.g., from temperature

rise). Climate-change mitigation is particularly important for

those human and natural environments that cannot adapt to

the pace of change.

Benefits of Climate-Change Mitigation and Assessment
of Equity

Equity lies with the concepts of sustainability, morality,

legality and a fair arrangement in climate policy decisions

(Fleurbaey et al., 2014). It brings intergenerational and

intratemporal issues to managing risk (Stern, 2014). This

includes common but differentiated responsibilities that

recognise that states have variable levels of responsibility for

climate change and in their capacities to cope, according to

national circumstances (Brunnée and Streck, 2013). National

circumstances and equity concern present-day responsibilities,

capabilities, historic responsibilities, levels of economic devel-

opment, resource availability, technology, costs, and interna-

tional externalities. These all need to be considered in the

broader context of sustainable development (Stern, 2014).

The worst impacts of climate change may be felt in nations

different from those that are the largest historic emitters of

greenhouse gases. Furthermore, in some cases the potential

impacts of climate change may occur in nations least able to

deal with the consequences. Hence, inequalities exist.

The benefits of climate-change mitigation (i.e. the difference

between impacts under the high- and low-SLR scenarios,

expressed as a percentage) will not be felt evenly worldwide

because of the different national circumstances as noted above.

This leads to questions of equity and the proportion of impacts

projected for a particular country relative to its contributions to

global greenhouse gas emissions or its ability to mitigate or

adapt through financial means. This paper has focused on GDP

per capita as a financial factor that indicates a nation’s ability

to adapt. In practice, finance may be channelled elsewhere, or

used to reduce other adverse impacts of climate change. Figure

4 (ENPF/y) and Figure 5 (wetland loss) illustrate impacts in G-

20 countries under SLR in the 2080s with respect to their

carbon dioxide emissions and GDP (at 2010 levels, as noted by

World Bank 2016a,b,c).

Figure 4a plots GDP per capita and carbon dioxide emissions

per capita, with the area of the circles representing the ENPF/

y. The larger the circle’s area, the greater the projected ENPF/

y. The lower left-hand side of the figure represents nations with

lower income per capita and lower emissions per capita, which

is more typical of developing nations. The upper right-hand

side of the figure represents nations with both higher income

per capita and higher emissions per capita. China and India

have the largest populations at risk of flooding from SLR due to

large populations living on low-lying coastal areas, but they

have relatively low levels of emissions per capita in 2010. Over

15 million ENPF/y in China and 13 million ENPF/y in India are

projected by the 2080s under the high-SLR scenario. With

climate-change mitigation, this is reduced to 3.7 million and 5.0

million per year respectively, representing a decrease of nearly

75% in China and 61% in India. Hence climate-change

mitigation could be very effective at reducing those people at

risk from flooding. For ENPF/y, the countries that would

benefit the least from climate change mitigation are Russia and

Argentina.

Figure 4b plots the percentage of global impacts for ENPF/y

in the 2080s against the percentage of global carbon dioxide

emissions for each G-20 nation. The diagonal line represents

where the percentage of global impacts felt by a country (in the

2080s) would be the same as its percentage of global emissions.

The farther away a country is plotted from the line, the less

equitable the impacts (e.g., a nation may have greater impacts

than its responsibility for, and proportion of, emissions). Only

Indonesia and India are situated above the line. This indicates

that they are projected to have greater impacts, in terms of

people flooded, than the proportion of emissions that they have

caused, under both the high- and low-SLR scenarios. Con-

versely, for all other nations situated below the line, their

Figure 3. Impacts of sea-level rise at global level and G-20 countries

(excluding the European Union) with respect to 1995 for different percentiles

of uncertainty in sea-level rise in the 2080s, for (a) expected number of people

flooded annually, and (b) wetland loss.
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proportion of impacts is less than their proportion of emissions,

albeit with this quantity being very sensitive to the amount of

SLR for China.

Figure 4c illustrates the relationship between ENPF/y and the

global GDP. Again, countries plotted above the diagonal line

indicate where the percentage of global impacts felt by a country

(in the 2080s) would be more than its percentage of GDP, and

below the line, vice versa. China and India, and to a lesser extent

Indonesia, have a greater percentage of global ENPF/y projected

than their percentage of GDP in 2010, albeit with considerable

sensitivity to the amount of SLR in the case of China. This may

mean that China, India, and Indonesia struggle to adapt unless

they are able to prioritise coastal protection over other national

costs. In contrast, the United States falls at an extreme position

of proportionality, with a very high percentage of global GDP but

a low percentage of global ENPF/y.

Figure 4. Expected number of people flooded annually for G-20 nations in

the 2080s for high and low sea-level rise for (a) carbon dioxide emissions per

capita and gross domestic product per capita (2010 values), (b) carbon dioxide

emissions at national level as a percentage of global totals, and (c) gross

domestic product at national level as a percentage of global totals.

Figure 5. Wetland loss for G-20 nations in the 2080s for high and low sea-

level rise for (a) carbon dioxide emissions per capita and gross domestic

product per capita (2010 values), (b) carbon dioxide emissions at national

level as a percentage of global totals, and (c) gross domestic product at

national level as a percentage of global totals.

Journal of Coastal Research, Vol. 35, No. 4, 2019

890 Brown et al.



www.manaraa.com

Figure 5 plots the same parameters as Figure 4, but with

wetland loss as the impact parameter. In absolute terms, the

greatest losses are projected for the United States, Australia,

Indonesia, Mexico, Brazil, and Canada (Figure 5a). Several

countries with largest losses are those with the highest GDP

per capita and emissions per capita. In relative terms,

comparing national wetland areas in the 2080s with 1995,

the greatest percentage losses are projected for Italy, Turkey,

and Japan. Figure 5b plots the proportion of impacts in terms of

the percentage of global wetland losses per country by the

2080s against the percentage of global carbon dioxide emissions

in 2010. The United States, Australia, and Indonesia in

particular all have a percentage of wetland loss that is greater

than it would be for a perfectly proportional relationship with

their percent contribution to global emissions (in 2010). In

contrast, the percentages of global wetland loss for China,

India, and Russia in particular are much less than their

percentages of global emissions. When comparing the percent-

age of global wetland losses against the percentage of global

GDP (Figure 5c), similar countries to Figure 5b emerged above

or below the diagonal line.

The outcome of the analysis described above is different from

that described by Hardy and Nuse (2016). Using different

approaches and a much higher SLR of 6 m, they found that

historically the five nations most responsible for the current

commitment to SLR (through historical emissions from 1850)

were exposed to the greatest projected land loss. The

differences in the proportions of impacts compared with

historical emissions or with a national economic situation

may therefore vary across impacts and for different time

frames or magnitudes of SLR. This challenges the idea of how

to define equity and to undertake a just response according to

common but differentiated responsibilities. However, Hardy

and Nuse (2016) and this study acknowledge that some

countries will experience a double inequity with greater

impacts compared with their contribution to emissions and

economic growth (see Figures 4 and 5).

Economic Effects of Climate-Change Mitigation
Adaptation, as well as climate-change mitigation, has the

ability to decrease local impacts. Adaptation could involve

protection (e.g., build coastal defences), accommodation (e.g.,

houses mounted on stilts, crop diversification), or retreat (e.g.,

move buildings landward) (IPCC, 1990) depending on, for

example, engineering capacity, geomorphology, ecology, legis-

lation, and policy. So far, this study has assumed no upgrade to

modelled defence levels since the base year. In reality,

continued adaptation investment is almost certain.

In the 2080s under the low-SLR scenario presented here,

around 95% of the G-20 total of ENPF/y and 41% of the global

sum are from the nine non-Annex 1 countries. In 2010, non-

Annex 1 nations produced 40% of global carbon emissions

(World Bank, 2016a). This suggests an overall near-propor-

tional relationship of impacts to emissions in 2010 for non-

Annex 1 nations, but there is variation within this between

non-Annex 1 countries. For wetlands, G-20 nations overall are

projected to experience a greater proportion of global losses

compared with non G-20 nations.

A nation’s potential to adapt and mitigate for climate

change may be linked to GDP/capita. Although this is a

simple metric that does not take account of other cost

burdens on a nation, it does provide a first-order view.

Additionally, climate-change mitigation could potentially

drive up the cost of energy and food, and thus slow economic

growth affecting monetary resources (Clarke et al., 2014;

Tavoni and Tol, 2010). This potentially leaves less money to

be spent on coastal protection and other forms of adaptation

to SLR, and Tol (2007) argued that these effects could be

significant. Using a 0.21-m rise in sea level by 2100 (the

smallest rise in the low-SLR scenario range, representing

stringent mitigation), and by assuming coastal defences are

upgraded (see ‘‘Impacts Model’’ section), the ENPF/y and

wetland losses under the standard socioeconomic scenario

were compared with these impacts when the socioeconomic

scenario had an 8% reduction in income per capita (based on

Tavoni and Tol, 2010) throughout the 21st century as a

potential effect of climate-change mitigation. As dike build-

ing is dependent on per capita income, the level of protection

offered is reduced. Globally, over the 21st century, this

comparison gives an increase in ENPF/y of 8% for the reduced

income per capita. Of this increase, 5% is projected to occur in

G-20 countries. ENPF/y for non-Annex 1 G-20 countries could

increase by up to 9%. Projected wetland losses particularly

increase until the 2030s, even under modeled adaptation

conditions. Global wetland loss under the low climate-change

scenario (with reduced-income socioeconomic scenarios com-

pared with the standard socioeconomic scenario) indicated an

increase in losses of 20% in the 2030s and 2% in the 2080s.

Thus, in the long term (multiple decades), a reduction in GDP

per capita has limited effect on wetland losses. However, it

must be noted that climate-change mitigation does provide

valuable time for ecosystems to respond to change.

These results show that although climate-change mitiga-

tion is worthwhile, echoing Tol (2007), it must be appreciated

that because of costs associated with climate-change mitiga-

tion, there is a potential implication that less money may be

available for adaptation. However, for sea-level impacts,

adaptation can reduce impacts by two orders of magnitude,

especially in those countries where there are high coastal

population densities. Adaptation is expected to be ongoing

and offers substantial benefits in terms of impacts avoided.

Combining adaptation and mitigation has been widely

advocated (Nicholls et al., 2007; Wong et al., 2014) as a

worthwhile method to reduce impacts (e.g., through wetland

creation) but requires further consideration to be spatially

effective.

Implications
Because of the commitment to SLR, an increase in coastal

impacts will remain inevitable regardless of the level of

climate-change mitigation. Mitigating for climate change

potentially substantially reduces the projected ENPF/y. Wet-

lands are projected to benefit less from climate-change

mitigation as this impact is more immediate (particularly if

they are constrained from moving inland because of hard

defences).
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Similar to Nicholls and Lowe (2004), the benefits and

incentives to mitigate for climate change will be increasingly

apparent for the effects of SLR over the longer term.

Adaptation to reduce impacts today is required because of

present-day extreme events, but as sea levels rise, further

adaptation will be necessary. Adaptation combined in synergy

with mitigation (Berry et al., 2015) may be an appropriate

approach in many places to reduce impacts. For example, along

suitable coastlines adaptation could include the reforestation of

mangroves, which are known to abate the damaging effects of

extreme water levels by acting as a buffer between land and

sea, as well as providing multiple ecosystem services and

absorbing carbon dioxide emissions (e.g., Polidoro et al., 2010;

Shepard, Crain, and Beck, 2011). However, it is important to

note that in some instances, adaptation could induce new

problems, such as increased erosion down-drift of groynes or

seawalls (Brown, Barton, and Nicholls, 2013), leading to

reduced sediment levels or flooding in adjacent low-lying areas

(Dawson et al., 2009).

For the maximum benefit in reducing impacts, adaptation

should ideally consider all causes of change that could influence

coastal flooding, not just SLR (Brown et al., 2014). This is noted,

for example, in Jakarta, Indonesia, where Ward et al. (2011)

found subsidence to be a major cause of flooding. By addressing

the causes of subsidence alone, the number of people flooded

would be reduced. For some areas, addressing subsidence could

be more important than adapting to SLR. Similarly, human

actions can potentially have a devastating effect on wetland

loss, such as through the conversion of wetlands to agriculture

or aquaculture or urban land use (Crooks et al., 2011; Polidoro

et al., 2010; Upadhyay, Ranjan, and Singh, 2002; Valiela,

Bowen, and York, 2001). Again, these losses could be of greater

magnitude than losses projected from SLR alone. Thus, good

practice suggests that effective adaptation needs to be

integrated within the wider environment, taking account of

multiple cross-sectoral threats (Newton, Carruthers, and Icely,

2012). This, however, is challenging to achieve.

Further Considerations
The scenarios used in this study are globally uniform

projections of SLR that take account of a range of uncertainties,

but SLR is additionally expected to have a pattern in response

to steric and ice-melt contributions (Church et al., 2013).

Taking into account spatial uncertainties in SLR arising from

oceanographic spatial variations (but not including the spatial

variations arising from the ice contribution) in the DIVA model,

Brown et al. (2016) indicated that global impacts varied by 10%

when contrasting an ensemble mean uniform SLR scenario

with a patterned scenario. Differences in impacts under the

patterned scenario were particularly enhanced around low-

lying or populated areas. Church et al. (2013) indicates higher

regional SLR from multiple drivers in East Asia and NW

America/Canada from an ensemble mean of projections by 12

models, with high rises also reported along many parts of the

Asian and African coastlines. Hence, non-Annex 1 countries

may be at greater risk from SLR than projected here. The

spatial variations in SLR noted above were obtained from

global climate models. An additional caveat is that local coastal

processes that may not be well represented by global models

influence extreme water levels closer to the coastline.

Although the Paris Agreement (United Nations, 2015) has

come into force, with the aim of stabilising surface tempera-

ture, sea levels are projected to rise for centuries. This

reinforces the need for adaptation. There remain concerns that

if there is a rapid dynamic change in ice sheets, sea levels could

rise even higher. For example, from cryosphere evidence,

DeConto and Pollard (2016) suggest that Antarctica alone

could contribute 15 m of SLR equivalent over 500 years if

emissions are unabated, with prolonged oceanic warming.

Although this research remains uncertain, if such high rises in

sea level were to occur, a fundamentally different approach

would be needed for adaptation, for both developing and

developed countries. This could have potential significant costs

to coastal and inland areas, and would be strongly linked with

socioeconomic development (Anthoff, Nicholls, and Tol, 2010).

Hence, the need to mitigate is increasingly important, and even

with mitigation, long-term adaptation plans should be consid-

ered.

In modelling impacts, much emphasis is placed on the

uncertainties associated with SLR. At times, SLR is identified

as the primary driver of change (e.g., Clough, Polaczyk, and

Propato, 2016), but it is important to remember that multiple or

compound uncertainties (Kettle, 2012; Moser, 2005) arise from

other input scenarios (e.g., socioeconomic change, subsidence)

and in numerically modelling the physical processes in impacts

models (e.g., Hinkel et al., 2014). At a global scale, and

sometimes at local scales, there lies much uncertainty into

how best to adapt, or what autonomous adaptation is taking

place that allows for greater accommodation of SLR. In this

paper, GDP has been the focus of the financial ability to adapt.

However, there are also numerous barriers that impede

adaptation (Kettle, 2012), such as governance issues, leading

to increasing uncertainty in future impacts. This could affect

coastal development, which is itself a major source of

uncertainty (Joshi et al., 2015). Furthermore, modelling wider

economic effects of climate change is complex and reliant on

many external actors. This paper has projected impacts for a

defined set of scenarios, aimed at global or subglobal decision

makers to determine who or what is vulnerable. At national

scales, further assessments are required, with input data and

uncertainties refined and reduced, so that optimal responses

can be planned for the potential impacts of SLR.

CONCLUSIONS
Climate-change mitigation helps stabilise the rate of SLR,

rather than the absolute magnitude of rise itself, over a

meaningful policy time frame. By analysing the ENPF/y and

wetland loss over the 21st century with a high-SLR scenario

and a low-SLR scenario with no additional adaptation, coastal

impacts have been reported globally and for G-20 nations,

where the latter are responsible for the majority of the world’s

carbon dioxide emissions. This paper found that: (1) Climate-

change mitigation means that some coastal impacts of SLR will

be delayed or avoided, especially in the latter half of the

century. The benefits of climate change mitigation depend on

factors such as the magnitude of climate-change mitigation,

and the uncertainties in response of SLR to climate and other

Journal of Coastal Research, Vol. 35, No. 4, 2019

892 Brown et al.



www.manaraa.com

social, institutional, economic, and environmental uncertain-

ties. Benefits of climate-change mitigation will extend into the

22nd century and beyond. (2) G-20 nations with the highest

emissions or GDP in 2010 often do not experience the greatest

projected impacts. This often reflects the higher projected

baseline standard of defences in these nations. Non-Annex 1

and developing nations, which generally have lower standards

of defence, would benefit most from climate-change mitigation.

Inequalities therefore exist. (3) There is less potential benefit of

climate-change mitigation for avoiding wetland losses than for

reducing the people flooded because of the different timescales

over which the relevant coastal processes operate, together

with differing land elevations involved. (4) Annex 1 G-20

nations have a greater proportion of the global wetland losses

compared with non-Annex 1 G-20 nations, so stand to lose more

unless new wetlands are created or emerge. (5) There may be

some trade-offs between climate-change mitigation and adap-

tation that demand greater consideration in national and

international assessments of the impacts of climate change.

Even with climate-change mitigation, significant impacts are

projected to occur and adaptation is also essential in coastal

zones. Future research could evaluate the dual benefits of

climate-change mitigation and adaptation policies, considering

the wider needs of coastal management.
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Schlömer, S.; von Stechow, C.; Zwickel, T., and Minx, T.C. (eds.),
Climate Change 2014: Mitigation of Climate Change. Contribution
of Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge: Cam-
bridge University Press, pp. 413–510.

Clough, J.; Polaczyk, A., and Propato, M., 2016. Modeling the
potential effects of sea-level rise on the coast of New York:
Integrating mechanistic accretion and stochastic uncertainty.
Environmental Modelling & Software, 84, 349–362.

Crooks, S.; Tamelander, J.; Laffoley, D., and March, J.V., 2011.
Mitigating climate change through restoration and management of
coastal wetlands and near-shore marine ecosystems—Challenges
and opportunities. Environment Department Papers, Marine
Ecosystem Series Paper 121, 69p.

Dasgupta, S.; Laplante, B.; Meisner, C.; Wheeler, D., and Yan, J.,
2009. The impact of sea level rise in developing countries: A
comparative anlaysis. Climatic Change, 93(3), 379–388.

Dawson, R.J.; Dickson, M.E.; Nicholls, R.J.; Hall, J.W.; Walkden, M.J.
A.; Stansby, P.K.; Mokrech, M.; Richards, J.; Zhou, J.; Milligan, J.;
Jordan, A.; Pearson, S.; Rees, J.; Bates, P.D.; Koukoulas, S., and
Watkinson, A.R., 2009. Integrated analysis of risks of coastal
flooding and cliff erosion under scenarios of long term change.
Climatic Change, 95(1–2), 249–288.

DeConto, P. and Pollard, D., 2016. Contribution of Antarctica to past
and future sea-level rise. Nature, 531(7596), 591–597.

Den Elzen, M.G.J.; Hof, A.F., and Roelfsema, M., 2013. Analysing the
greenhouse gas emission reductions of the mitigation action plans
by non-Annex I countries by 2020. Energy Policy, 56, 633–643.

DINAS-COAST Consortium, 2006. DIVA 1.5.5. Potsdam Institute for
Climate Impact Research. http://www.diva-model.net/

Journal of Coastal Research, Vol. 35, No. 4, 2019

Benefits of Mitigation in G-20 Countries 893



www.manaraa.com

Ericson, J.P.; Vorosmarty, C.J.; Dingman S.L.; Ward L.G., and
Meybeck, M., 2006. Effective sea-level rise and deltas: Causes of
change and human dimension implications. Global amd Planetary
Change, 50(1–2), 63–82.

Feagin, R.A.; Martinez, M.L.; Mendoza-Gonzalez, G., and Costanza,
R., 2010. Salt marsh zonal migration and ecosystem service change
in response to global sea level rise: A case study from an urban
region. Ecology and Society, 15(4), article 14. http://www.
ecologyandsociety.org/vol15/iss4/art14/

Fleurbaey, M.; Kartha, S.; Bolwig, S.; Chee, Y.L.; Chen, Y.; Corbera,
E.; Lecocq, F.; Lutz, W.; Muylaert, M.S.; Norgaard, R.B.; Okereke,
C., and Sagar, A.D., 2014: Sustainable development and equity. In:
Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.;
Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.;
Eickemeier, P.; Kriemann, B.; Savolainen, J.; Schlömer, S.; von
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